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LETTER TO THE EDITOR

Localization properties of the periodic random Anderson
model
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Universit́e de Geǹeve, D́epartement de Physique Théorique, 24 Quai Ernest-Ansermet CH-1211
Geǹeve 4, Switzerland

Received 9 December 1996, in final form 7 April 1997

Abstract. We consider diagonal disordered one-dimensional Anderson models with an
underlying periodicity. We assume the simplest periodicity, i.e. we have essentially two lattices,
one that is composed of the random potentials and the other of non-random potentials. Due to
the periodicity, special resonance energies appear, which are related to the lattice constant of the
non-random lattice. Further on two different types of behaviour are observed at the resonance
energies. When a random site is surrounded by non-random sites, this model exhibitsextended
states at the resonance energies, whereas otherwise all states are localized with, however, an
increase of the localization length at these resonance energies. We study these resonance energies
and evaluate the localization length and the density of states around these energies.

Localization properties of disordered systems were first examined in tight-binding models
by Anderson [1], who showed that certain states are localized due to disorder. His result
was generalized by Mott and Twose [2] and Landauer [3] who conjectured and later several
authors [4, 5] proved that, in one dimension, all states are localized for any amount of
disorder.

Recently, however, there have been a number of experiments in quasi-one-dimensional
systems which exhibit unusual high conductivities. These systems are polymers as well
as mesoscopic rings [6–8]. It seems, therefore, of great importance to study delocalization
mechanism in disordered systems. As has already been pointed out in some recent works
on disordered systems, correlations in disorder can be a driving force for delocalization in
one dimension [6, 9–14] and in two dimensions [15]. The new approach in this paper is
to consider systematically the effect of a deterministic periodic potential, as a source of
correlations in the disorder.

In this study we consider tight-binding models related to the original Anderson model.
The periodicity is introduced by considering two underlying lattices, of which one is
composed by the random sites and the other by the deterministic sites. In addition, we
suppose that all deterministic sites are constant. This letter is divided in two parts. In the
first part we consider the special case where each random site is surrounded by at least
one constant neighbour site. In this case, as discussed later, there exist discrete resonance
energies for which the states areoverall extended, i.e. with an infinite localization length.
In the second part, where the restriction above does not apply, we find the same resonance
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energies. The onlyessentialdifference is that instead of having an infinite localization
length these states present only an enhancement of this length at these critical energies.

In the usual diagonal disordered Anderson model with uncorrelated disorder, on each
site the localization length can be evaluated and yieldsLc(E) = 24(4−E2)/W 2 [16], where
W is the width of the disorder potential distribution, for small disorder. The consequence
is that all states are localized for this model. This is, however, only true if we take the
average over different configurations of impurities, as otherwise it is well known that so-
called Azbel [17] resonances can appear for a given configuration. These resonances of
extended states, however, disappear when we average over different configurations.

For the first part we start with the following Anderson model

(Vl − ε)9l +9l+1+9l−1 = 0 (1)

whereVl is non-zero only ifl is a multiple ofd, whered is an integer, i.e.Vdl are random
andVdl+1 = · · · = Vd(l+1)−1 = 0. The case where the deterministic sites are non-zero but
constant, is trivially obtained by shifting the energy.

The method used to solve this model was developed by Erdös and Herndon [18] and later
simplified by Felderhof [19]. The idea is as follows. We suppose that between impurities
the solution can be written as the sum of an incident plane wave and a reflected plane wave,
i.e.

9l = An eikl + Bn e−ikl Xn−1 < l < Xn (2)

whereXn are the positions of the impurities with valueVdn. Inserting this in (1) yields the
following transfer matrix relation ford > 1,(

An+1

Bn+1

)
=
(

αn e−2ikXn(−iWn)

e2ikXn(iWn) α∗n

)(
An
Bn

)
(3)

whereWn = Vdn/2 sink, αn = 1+ iWn and 2 cosk = ε. Instead of considering this transfer
matrix, Felderhof uses the 3-vector transfer matrix, namely

0n =
( 1−W 2

n − 2iWn −W 2
n − iWn −W 2

n

2W 2
n + 2iWn 1+ 2W 2

n 2W 2
n − 2iWn

−W 2
n −W 2

n + iWn 1−W 2
n + 2iWn

)
(4)

and

Gn =
( e2ik(Xn−Xn−1) 0 0

0 1 0
0 0 e−2ik(Xn−Xn−1)

)
. (5)

The main result of Felderhof is to obtainR/T = (P (2, 2)−1)/2, whereR is the reflection
coefficient andT the transmission coefficient and

P = 0n ·Gn · 0n−1 ·Gn−1 . . . . (6)

There are essentially two cases which can be solved analytically in this approach. The first
one was studied by Felderhof, who considered the limitk→∞ and found that the average
resistance grows exponentially with the number of scatterers or Anderson localization. In
our case we only consider the band centre, i.e. whereE = 0 and whend is even we have, as
E = 2 cosk and asXn−Xn−1 = d, thatGn = I , whereI is the identity matrix. Calculating
(6) yields the surprisingly simple expression

P(2, 2) = 2

( N∑
n=1

Wn

)2

+ 1. (7)
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This shows that when the sum of the impurities is zero the reflection coefficient vanishes.
This result can be extended to the case wherew = ∑N

n=1Wn is non-zero by redefining
E = ε − w/N = 2 cosk, which ensures that

∑
n(Wn − w/N) = 0 and implies that

the reflection coefficient vanishes whenε = w/N . This result states that we havetotal
transmissionfor this model. In fact if we suppose that the average ofVn = 0 then
w/N → 0 for N → ∞, due to the central limit theorem. This, therefore, implies that
we have total transmission at the band centre in the thermodynamic limit.

Above we showed that we get total transmission at the critical energy. It is
straightforward to see that the state atε = 0 is overall extended, as one only needs to
suppose that9dl = 0 and one is left with an ordered Anderson model. In the following
we study the dependence on energy of the localization length around the critical energy.
Starting again from equation (1) and ford even, we renormalize this equation as follows,

(W2l+1− ε)92l−2+�2l(ε)92l + (W2l−1− ε)92l+2 = 0 (8)

where

�2l(ε) = W2l+1+W2l−1− 2ε − (W2l+1− ε)(W2l − ε)(W2l−1− ε). (9)

Furthermore, in our diluted modelW2l+1 = 0, which when inserted in (9), yields

92l−2+ (2+ ε(W2l − ε))92l +92l+2 = 0 (10)

for ε 6= 0. This last model was extensively studied in the limitε � 1 by Derrida and Gardner
[20]. They calculated the complex Lyapounov exponentγ , where the real part corresponds
to the inverse localization length and the imaginary part toπ times the integrated density
of states. Their results can be expressed as follows,

Re(γ ) ' K1ε
2/3〈W 2〉1/3 Im(γ ) ' K2ε

2/3〈W 2〉1/3 (11)

whereK1 = 0.29. . . andK2 = 0.16. . . and 〈·〉 is the average over all impurities. From
(11) it is straightforward that the inverse localization lengthL−1

c scales as

L−1
c ∼ ε2/3〈W 2〉1/3 (12)

and the density of states is

ρ(ε) = ∂ε Im γ (ε) ∼ ε−1/3. (13)

Above we only considered the extended states atε = 0 for d even, but there exist, in
general,d − 1 energies at which the states are extended. Ford = 3, for example, we have
delocalized states forε = −1 andε = 1. For anyd they can be easily evaluated as they
are the roots of(1, 0) · Td ·

(1
0

) = 0, where

Td =
d−1∏
n=1

(
ε −1
1 0

)
. (14)

The solutions can be written asε = 2 cosnπ/d, wheren is an integer with|n| < d.
These critical energies correspond to the resonance energies discussed by Derrida and

Gardner [20], for which their expansion in the low disorder limit is non-trivial. The two
uppermost curves in figure 1 show the localization length as a function of energy. One
clearly sees the infinite localization length at the critical energies.

In the following we study numerically the case where we can have two neighbouring
random sites. In general, one obtains a similar result as that for the completely random
model, where in a first-order perturbationLc ∼ (4− E2) [16]. The changes occur at the
resonance energies discussed above. In fact at these energies we have an enhancement of
the localization length, as shown in figure 1 for the two lowest curves.
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Figure 1. Localization length in arbitrary units as a function of energy. The two uppermost
curves are from the case discussed in the first part of this letter with extended states andd = 4
andd = 3, respectively. The two lowest curves represent the case where the localization length
is not infinite but enhanced at the resonance energies withd = 4 andd = 3, respectively.

It is interesting to note that the peaks of the localization length correspond exactly to the
resonance energies discussed above. The relative enhancement, however, decreases with
increasingd and in the limitd −→ ∞ we recover the usual uncorrelated result. The plot
is shown for a system size of 1000 and averaged over a thousand configurations.d = 3
corresponds to the case where every third site is non-random and the sites in between are
random. This is opposite to the case discussed in the first part of this letter, and shown in
the second uppermost curve of figure 1, where every third site is random and the sites in
between are non-random.

This last study demonstrates that a periodic correlation in the disorder is not enough
in order to completely delocalize some states. This correlation enhances the localization
length at some energies related to the periodicity. It appears that an important factor is the
isolation of the random sites. For different models, however, like the dimer or multi-mer
case [9–15], this is not an essential condition.

The main conclusion we can derive from this study is that if we consider an Anderson
model with everyd ’s site disordered instead of each site, whered is an integer andd > 2,
the model exhibits extended states at some critical energies. The exponents describing
the strength of the divergence remain the same for the different energies, i.e.ν = 2/3.
The delocalization properties of these diluted random systems can be understood in terms
of correlations, as diluting the system is equivalent to introducing a long-range periodic
correlation in the disorder. Outside of the critical energies this dilute Anderson model has
the same localization properties as the usual one. When we equate the localization length
with the size of the system, in order to estimate the number of states whose localization
length exceeds the system size, we observe using (13) that this number is independent of
the size; therefore, in the infinite size limit, these states should not have any influence
on the transport properties. However, for small quasi-one-dimensional systems like, for
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example, disordered superlattices of heterostructures or systems with very few impurities
these effects do influence the transport properties. Finite temperatures can also reduce the
effective system size and lead to changes in the transport properties. The results presented
above have important consequences on discretization procedures of disordered systems.
Indeed, for a given number of disordered sites, the choice of the elementary lattice constant
drastically affects the localization properties of the system.

I would like to acknowledge C P Enz for helpful discussions. This work was supported in
part by the Swiss National Science Foundation.
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